Circuit Model of Plasmon-Enhanced Fluorescence

نویسنده

  • Constantin Simovski
چکیده

Hybridized decaying oscillations in a nanosystem of two coupled elements—a quantum emitter and a plasmonic nanoantenna—are considered as a classical effect. The circuit model of the nanosystem extends beyond the assumption of inductive or elastic coupling and implies the near-field dipole-dipole interaction. Its results fit those of the previously developed classical model of Rabi splitting, however going much farther. Using this model, we show that the hybridized oscillations depending on the relationships between design parameters of the nanosystem correspond to several characteristic regimes of spontaneous emission. These regimes were previously revealed in the literature and explained involving semiclassical theory. Our original classical model is much simpler: it results in a closed-form solution for the emission spectra. It allows fast prediction of the regime for different distances and locations of the emitter with respect to the nanoantenna (of a given geometry) if the dipole moment of the emitter optical transition and its field coupling constant are known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging of Surfaces by Concurrent Surface Plasmon Resonance and Surface Plasmon Resonance-Enhanced Fluorescence

Surface plasmon resonance imaging and surface plasmon induced fluorescent are sensitive tools for surface analysis. However, existing instruments in this area have provided limited capability for concurrent detection, and may be large and expensive. We demonstrate a highly cost-effective system capable of concurrent surface plasmon resonance microscopy (SPRM) and surface plasmon resonance-enhan...

متن کامل

Enhanced optical absorption in organic solar cells using metal nano particles

In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...

متن کامل

Enhanced optical absorption in organic solar cells using metal nano particles

In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...

متن کامل

Wavelength-dependent metal-enhanced fluorescence using synchronous spectral analysis

The fluorescence spectrum of Au-clusters (8and 25-atom), which covers the spectral range 350–900 nm, is dramatically enhanced in the presence of plasmon supporting plate-well deposited nanoparticles. The wavelength-dependent metal-enhanced fluorescence (MEF spectrum) correlates well with the plasmon specific scattering spectrum, i.e. the synchronous scatter spectrum of the silver surface of pla...

متن کامل

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015